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What is Lasso Regression

@ Stands for least absolute shrinkage and selection operator. Introduced by
Robert Tibshirani in 1996.
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@ Stands for least absolute shrinkage and selection operator. Introduced by
Robert Tibshirani in 1996.

@ In a regular least-squares regression with many more variables than number
of subjects, there is a need to select features with the strongest effect.

@ This improves model explainability and reduces overfit.

@ Lasso introduces a penalty term on the ¢1-norm of the parameter vector in
addition to the least-squares term:

1
arg min{2||Ax — b|? + )\||x||1}

@ This Lagrangian form is equivalent to a constrained minimisation problem
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Lasso Regression (continued)

@ Similar to ridge regression, which introduces a constraint on the /5 norm of
the parameter vector, but better, since Lasso tends to push parameters to
zero, whereas ridge only decreases their absolute value.
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Introduction

Lasso Regression (continued)

@ Similar to ridge regression, which introduces a constraint on the /5 norm of
the parameter vector, but better, since Lasso tends to push parameters to
zero, whereas ridge only decreases their absolute value.

@ The optimal case would be best-subset selection, when all possible
combinations of regressors are tried to produce the one with the lowest sum
of squares for a given number of non-zero parameters.

@ This is computationally costly, since it is O(m!), but Lasso gives a very good
approximation to it.

@ Both ridge and Lasso are convex problems, and can be solved with the
correct numerical, computational methods
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Original Paper

o A highly efficient semismooth Newton augmented Lagrangian method for
solving Lasso problems, Li, Xudong, Sun, Defeng and Toh, Kim-Chuan,
SIAM Journal on Optimization, Vol. 28(1), pp 433-458, 2018, SIAM
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Semismooth Newton Augmented Lagrangian Method

Convex Composite

Primal Problem

. 1
(P) m|n{§||Ax—b||2+/\||x||1}

where A: X - Y, h: Y >R, p: X = (—00,+0] and ¢ € X is a vector.
h(€) = 311€ — b]|* and p(x) = Allx|lx
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Semismooth Newton Augmented Lagrangian Method

Convex Composite

Primal Problem

[l
(P) min {3 1x — BIP + Al }

where A: X - Y, h: Y >R, p: X = (—00,+0] and ¢ € X is a vector.
h(€) = 311€ — b||* and p(x) = AlIx]lx

Dual Problem

| \,

©) max{ ~ 162+ (6.6) | A€ +u=c =0, Jull <]

where h*(€) = —3[€]|* + (b, €) and p*(x) = L
p* and h*: the Fenchel conjugate functions of p and h

.
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Semismooth Newton Augmented Lagrangian Method

Assumptions on the loss function

Assumption 1.

1. h*(-) is essentially smooth where h* is differentiable on int(dom h*) # () and

limk_so0||A*(£%)|| = +00 whenever {¢¥} is a sequence in int(dom h*)
converging to a boundary point £ of int(dom h*).

2. p*(-) is either an indicator function §,(-) or a support function ¢, for some
nonempty polyhedral convex set P C X.

Assumption 2.

h:Y — R is a convex differentiable function whose gradient is
aih Lipschitz continuous i.e.

IVh(E") — Vh(E)|| < aihns’ —¢|, Ve Eey

(h*(-) is strongly convex with modulus ay)

\
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Semismooth Newton Augmented Lagrangian Method

Assumptions on the loss function

Assumption 3.

h is essentially locally strongly convex, i.e. for any compact and convex set
K C dom Oh , there exists Sk > 0 s.t.

(1= )A(E") + Ah(E) < A((L — N)E'+A) + 3 BeA(L — NE' — &P,
Ve Ee K

(Vh*(:) is locally Lipschitz continuous and directionally differentiable on
int(dom h*))

Assumption 4.

The Karush Kuhn Tucker (KKT) system is nonempty and its solution is denoted

as &, and X.

A,
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An augmented Lagrangian method for (D)

@ The Lagrangian function of (D) is,
& u;x)=h"(&) + p*(u) — (x, A"¢+u—c), V(ux)elyxXxX
e Given o > 0, the augmented Lagrangian function of (D) is,
Lo(E,8;%) =0, u;x) + %HA*g Yu—clf, Y mx) EY X X x X

@ Prox, .|, (x) = arg minu{%Hu —x|>+ o\||ull1} and
Proxyp(x) = sgn(x) o max{|x| — o\, 0}.
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Algorithm 1

Algorithm Inexact Augmented Lagrangian Method

Let op > 0 be a given penalty parameter.
Choose (£, 1%, x%) € int(dom h*) x dom p* x X.

for i=0,1,...,00 do
(1) Compute

(€ o) = arg min{Wi (€, u) == Lo, (€ u; x)} (1)
(2) Compute

XKL = Xk _ g (A*ERY 4 uk T — ) & update oyi1 T s < 00
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Semismooth Newton Augmented Lagrangian Method

Global and Local Convergence

From [Rockafellar, 1976a' and 1976b?],

Convergence Criterion for inner subproblem (1)

82

A) W (ekHL Ky _infw, < Sk
(A) Wi (", u" ) —in k_20k,kz=;sk<oo

62 oo
k+1 o kt1y _ s < (% k1 _ k2 >
(Bl) Wi(&" ™, u" ) —infW, < <2O_k)||x x“||%, dk >0, kgzodk < oo

/
(B2)  dist(0, dW, (-1, uk*1)) < (f_i) Ix+L — k||, 0< &, — 0
k

where, dist(x,C) := infyec||x — x'|| for any x € X and any C C X

1Rockafellar, R.T., 1976. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5), pp.877-898.

2Rockafellar, R.T., 1976. Augmented Lagrangians and applications of the proximal point
algorithm in convex programming. Mathematics of operations research;51(2), pp.97-116.
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Semismooth Newton method for inner problems

Definition (Semismoothness) [Miffin, 1977]3

Suppose that M : X = L(X,V) & F: X — Y, is a locally Lipschitz continuous
function. F is said to be semismooth at x € X if F is directionally differentiable
at x and for any G € OF(x + Ax) = M(x + Ax) & Ax — 0.

F(x + Ax) — F(x) — G(Ax) = o(||Ax]|)
F is said to be strongly semismooth at x € X if,
F(x + Ax) — F(x) — G(Ax) = O(||Ax]|]?)

Then F is said to be semismooth (strongly semismooth) function on X if it is
semismooth (strongly semismooth) everywhere in X

3Mifflin, Robert. “Semismooth and semiconvex functions in constrained optimization”. In:
SIAM Journal on Control and Optimization 15.6 (1977),pp. 959-972
SSNAL for Solving Lasso in R 12/39



Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method for inner problems

o While fixing o > 0, we newly denote for £ € int(dom h*),
P(&) = irL1’f V(& u) =inf L,(&, u; x)
= h*(§) + p*(Proxp- /o )(X /o — A™¢ + ¢)

1 1
+ 5 IProxp(x = (A€ — )P — 5|72

e We compute the 15t and 2"? derivatives
V(&) = Vh*(€) — AProx,p(X — o(A*€ — ¢)), V€ € int(dom h*)
Pep(€) = V2h*(€) + g AProx,p(X — a(A*€ — ¢))A*

o where 92h*(¢) is the Clarke subdifferential of Vh*(+) at ¢ and
0 Prox,p(X — o(A*¢ — ¢)) is the Clarke subdifferential of the Lipschitz
continuous mapping and Jacobian of Prox,,(-) at X — o(A*¢ — ¢).
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Semismooth Newton method for inner problems

@ Then solve the semismooth equation,
V() =0, & € int(dom h*)
@ Then we define the generalised Hessian of ¢ at &,
V = H+ cAPA*
with H € 92h*(€) and P € 9 Prox,,(X — o(A*¢ — c)) where for the case of
our paper, h(¢) = 3[[¢]° + b€, Vh*(€) =&+ b, V2h*(§) =Im. h*(-) is

twice differentiable and Proxy.| is a piecewise linear function which are
strongly semismooth.
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Algorithm 2

Algorithm Semismooth Newton Method

Given the hyperparameter, 11 € (0,1),7 € (0,1),7 € (0,1] & & € (0,1).
Choose ¢° € int(dom h*) and for j = 0,1,...,00 do

(1) Choose H; € 8?(Vh*)(¢) & P; € OProx,,(%X — o(A*¢ — ¢)). Let V; :=
H; + 0 AP;A*. Solve the following Linear System exactly or by the conjugate
gradient algorithm to find o’

Vid + Vip(&) = 0, where d = A¢
st | Vid + V(&) < min(d, [ Vo))

(2) Set o = §™ where mj is the first nonnegative integer m for which,
¢+ 6mdl € int(dom h*) and (& + 6™ ) < Y(&) + pd™(V(&), &)

(3) Set g+l = ¢ + o
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Semismooth Newton Augmented Lagrangian Method

Convergence of semismooth Newton method

Let the sequence {¢/} be generated by Algorithm 2,

Assume that Vh*(-) and Prox,(-) are strongly semismooth on [(dom h*) and X
then &/ converges to the unique optimal solution £ € int(dom h*) and
i=x—c(AT¢ — ¢) at least superlinearly, i.e.,

&% = €]l = O(ll¢ &), for any j > 0,V; € ()
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Semismooth Newton Augmented Lagrangian Method

Convergence of semismooth Newton method

Let the sequence {¢/} be generated by Algorithm 2,

Assume that Vh*(-) and Prox,(-) are strongly semismooth on [(dom h*) and X
then &/ converges to the unique optimal solution £ € int(dom h*) and
i=x—c(AT¢ — ¢) at least superlinearly, i.e.,

&7 ~ &l = O(¢ &), for any j >0, V; € (&)

Then, the implementable stopping criterion from the stopping criteria (A), (B1)
and (B2)

Ek
(A) () € ——=
O'k/Oth
(BY) [Ver(€)| < Vanokdil| A" + u*H — ||
(B2) [[Veu(& )| < | AEH + bk — |, 0< 6, =0

where Y77 ek < 0o and Y2, 0k < oo and [|[Vipk(E5TL)| s sufficiently small.
TSR i



Semismooth Newton method

We can exploit the second order sparsity,

n
' I:_
O(m®n * sparsity)

(AP)(A I:I D . (m?2p * sparsity)
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method
@ We solve the linear system,
(I, + c APAT)d = =V (€)

o Welet 7 :={j | |xj| >0A j=1,..,n} and |J| = r, the cardinality of 7.
Then we have

APAT = (AP)(AP)T = A7 A
@ For the case when p << m, instead of factorising an m x m matrix, we can

invert a much smaller, p X p, matrix by using the Sherman-Morrison-Wood
formula,

(Im + 0 APANY = (I + 0 A7 A =1, — Ag (o7, + AL AS)TAL

[ ‘
(AP)*(AP) = = W O(p?m = sparsity)
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Semismooth Newton method

The relative KKT residual:

n= ||)_< — PFOXM|,H()_< — A*(A)_( — b))H
L+ [Ix]| + [[Ax — bl

<e

Number of nonzeros: nnz := min {k DA 0.999||X||1}
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Datasets

Data Dimension(m; n)  Apmax(AA*)
pyrim5 74; 201376 1.22e+06
triazines4  186; 635376 2.07e+07
abalone7  4177; 6435 5.21e+05
bodyfat7  252; 116280 5.29e+4-04
housing7  506; 77520 3.28e4-05
mpg7 392; 3432 1.28e+04
space_ga9 3107; 5005 4.01e+03

Table: UCI and Statlib Testing Instances

@ Methylation data - 450k CpG methylation sites for 656 patients, and their
ages
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Semismooth Newton Augmented Lagrangian Method

Implementation details - overview

How was the algorithm implemented and tested in code?
@ First, we installed MATLAB, cloned the SuitelLasso package.
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Semismooth Newton Augmented Lagrangian Method

Implementation details - overview

How was the algorithm implemented and tested in code?
@ First, we installed MATLAB, cloned the SuitelLasso package.

@ Ensured it reproduced the results of the [Li et al, 2018] paper on UCI and
Statlib data sets

© Then, we made drafts in R of the original MATLAB code with reference to
the pseudocode in [Li et al, 2018]

@ Changed norms, matrix-vector algebra functions, preconditioning functions,
workflow and parameterisation as necessary.
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Implementation details - debugging

To transform the drafts into working code, the packages were debugged
side-by-side as follows:

@ Breakpoints were introduced in both packages after every major event.
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Implementation details - debugging

To transform the drafts into working code, the packages were debugged
side-by-side as follows:
@ Breakpoints were introduced in both packages after every major event.
@ The numerical equality of key values was ensured
Primal objective
Dual objective
Relative difference

Parameter vectors x and x;
o for matrix scaling, etc...
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Implementation details - debugging

To transform the drafts into working code, the packages were debugged
side-by-side as follows:
@ Breakpoints were introduced in both packages after every major event.
@ The numerical equality of key values was ensured
Primal objective
Dual objective
Relative difference

Parameter vectors x and x;
e o for matrix scaling, etc...

@ Where we wanted to test the equality of a vector, equality of a suitable norm
was taken as a substitute.

@ This revealed easily-fixed bugs in the R code when they occurred.

@ To begin, this was only performed on abalone7 data at one particular value
of A
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Implementation details

@ For the solution of the subproblem, the logical switch on how to invert the
sparse Hessian was taken from [Li et al, 2018] and implemented in R, with
the same debugging process as above.
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Semismooth Newton Augmented Lagrangian Method

Implementation details

@ For the solution of the subproblem, the logical switch on how to invert the
sparse Hessian was taken from [Li et al, 2018] and implemented in R, with
the same debugging process as above.

@ For the first several iterations on abalone7 data, the R code was able to
generate the same results on key variables as the MATLAB code.
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the same debugging process as above.

@ For the first several iterations on abalone7 data, the R code was able to
generate the same results on key variables as the MATLAB code.

@ Towards the end of the algorithm, very slight differences (on the order of
107>, and relatively small also) were observed

@ We attributed to different handling of floating point extrema.
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Semismooth Newton Augmented Lagrangian Method

Implementation details

@ For the solution of the subproblem, the logical switch on how to invert the
sparse Hessian was taken from [Li et al, 2018] and implemented in R, with
the same debugging process as above.

@ For the first several iterations on abalone7 data, the R code was able to
generate the same results on key variables as the MATLAB code.

@ Towards the end of the algorithm, very slight differences (on the order of
107>, and relatively small also) were observed

@ We attributed to different handling of floating point extrema.

@ However, this did lead in general to the R code taking a few more iterations
than MATLAB.
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Implementation details

@ Nevertheless, after de-scaling and transforming the output vectors, we
obtained the exact same results as the MATLAB code in terms of objective
values, minimum and maximum parameter estimates and number of
non-zeros calculated according to:

@ nnz := min {k | Ele |%¢] > O.999||x1}
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Semismooth Newton Augmented Lagrangian Method

Overall results

Data Ac Time (s) Objective Value
Matlab — R-SSNAL — glmnet  Matlab — R-SSNAL — g/mnet
pyrim5 1073 2.16 — 9.92 — 0.40 0.07511 — 0.07511 — 0.0795
(74;201376) 1074 2.63 —27.82 — 0.26 0.0109 — 0.0108 — 0.0260
triazines4 1073 13.79 — 170.92 — 3.3 0.5452 — 0.5452 — 0.5548
(186;635376) 10~* 27.90 — 1580.88 — 5.48 0.1156 — 0.1156 — 0.1524
abalone7 1073 1.95 —6.84 — 1.04 11407 — 11407 — 12158
(4177,6435) 1074 3.47 —18.14 —2.48 9289 — 9289 — 9716
bodyfat7 1073 1.64 — 5.00 — 0.30 0.2925 — 0.2925 — 1.334
(252;116280) 10~* 227 — 7.52 —0.98 0.03031 — 0.03031 — 0.2372
housing7 1073 2.92 — 13.88 — 0.60 2775 — 2775 — 2819
(506;77520) 1074 2.27 — 7.52 — 0.98 920.3 — 920.3 — 987.1
mpg7 1073 0.32 —1.02 — 0.04 1669 — 1669 — 2076
(392;3432) 107* 0.37 —2.90 — 0.16 890 — 890 — 985.57
space_ga9 1073 0.81 —2.34 —0.10 31.9 —31.9 — 62.08
(3107;5005) 10~* 2.27 — 7.52 — 0.98 19.88 — 19.88 — 31.63

Table: Performance comparisons of SSNAL in

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R

Matlab and R and g/mnet
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Overall results

Data

min

max

NNZ

Matlab — R-SSNAL — glmnet

Matlab — R-SSNAL — glmnet

Matlab — R-SSNAL — glmnet

pyrim5
(74;201376)
triazines4
(186;635376)
abalone?
(4177,6435)
bodyfat7
(252;116280)
housing7
(506;77520)
mpg7
(392;3432)
space_ga9
(3107;5005)

-0.0422 — -0.0422 — -0.1732
-0.0897 — -0.0896 — -0.63454
-0.163 — -0.163 — -0.163
-0.458 — -0.458 — -0.4525
-8.13 —-8.13 —-13.49
-13.3 —-13.3 —-12.97
-0.0465 — -0.0465 — -0.8133
-0.0526 — -0.0526 — -1.06
-7.37 — -7.37 — -8.02
-13.1 —-13.1 —-19.7
-5.08 — -5.08 — -23.68
-11.8 —-11.8 —-18.93
-1.14 —-1.14 — -3.68
-3.56 — -3.56 — -4.59

0.165 — 0.166 — 0.1067
0.172 — 0.172 — 0.064
0.161 — 0.161 — 0.182
0.300 — 0.296 — 0.2465
117 —11.7—11.7
16.1 — 16.1 — 7.96
1.05 — 1.05 — 1.202
1.05 — 1.045 — 1.314
3.25—3.25—4.114
113 — 11.27 — 8.39
17 — 16.98 — 14.99
153 — 153 —16.38
0.978 — 0.978 — 3.77
2.64 — 264 —4.71

70 — 70 — 166
77 — 78 — 1643
565 — 572 — 292

261 — 261 — 1573

24 —24 —21
59 — 59 — 129
2—2—17
3—3—49

158 — 158 — 163
281 — 281 — 484

47 — 47 — 46
128 — 128 — 172
14 —14—19
38 — 38 — 58

Table: Performance comparisons of SSNAL in Matlab and R and glmnet

M.W.Lee & M.Renfrew (UoE)

SSNAL for Solving Lasso in R



Implementation details

@ The algorithm was profiled.

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R 27/39



Implementation details

@ The algorithm was profiled.

@ Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R 27/39



Semismooth Newton Augmented Lagrangian Method

Implementation details

@ The algorithm was profiled.

@ Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

© For very large problems, we implemented fast algorithms suggested on
StackOverflow in RCpp, which can execute fast C++ code as an R function.

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R

27/39



Semismooth Newton Augmented Lagrangian Method

Implementation details

The algorithm was profiled.

Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

For very large problems, we implemented fast algorithms suggested on
StackOverflow in RCpp, which can execute fast C++ code as an R function.

We then exported the (polynomial basis expanded) data from MATLAB to R
and compared it to the glmnet package using a manual 10-fold
cross-validation for the seven UCI data sets.

© 0 o090

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R 27 /39



Semismooth Newton Augmented Lagrangian Method

Implementation details

The algorithm was profiled.

Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

For very large problems, we implemented fast algorithms suggested on
StackOverflow in RCpp, which can execute fast C++ code as an R function.

We then exported the (polynomial basis expanded) data from MATLAB to R
and compared it to the glmnet package using a manual 10-fold
cross-validation for the seven UCI data sets.

© 0 o090

@ The objective function for gimnet was suitably transformed.

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R 27 /39



Semismooth Newton Augmented Lagrangian Method

Implementation details

The algorithm was profiled.

Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

For very large problems, we implemented fast algorithms suggested on
StackOverflow in RCpp, which can execute fast C++ code as an R function.

We then exported the (polynomial basis expanded) data from MATLAB to R
and compared it to the glmnet package using a manual 10-fold
cross-validation for the seven UCI data sets.

© 0 o090

The objective function for gimnet was suitably transformed.

© 0
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Semismooth Newton Augmented Lagrangian Method

Implementation details

The algorithm was profiled.

Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

For very large problems, we implemented fast algorithms suggested on
StackOverflow in RCpp, which can execute fast C++ code as an R function.

We then exported the (polynomial basis expanded) data from MATLAB to R
and compared it to the glmnet package using a manual 10-fold
cross-validation for the seven UCI data sets.

© 0 o090

The objective function for gimnet was suitably transformed.

© 0

Methylation data could not undergo a cross-validation because the algorithm
did not converge in sensible time, but we did show better objective values
around the optimal lambda obtained by cv.g/lmnet

@ Altogether, around 1,800 lines of code.
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Cross-validation

@ Split the data into equal portions, i.e. 10 parts
o Use 19—0 as a train set

@ Make predictions for the remaining % and compute mean-squared error for
that fold

° Y (¥ —yi)

M.W.Lee & M.Renfrew (UoE) SSNAL for Solving Lasso in R 28/39



Cross-validation: UCI and Statlib
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Cross-validation: UCI and Statlib
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Cross-validation: UCI and Statlib
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Cross-validation: UCI and Statlib
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Cross-validation: UCI and Statlib
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Cross-validation: UCI and Statlib
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Cross-validation: UCI and Statlib
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Objective values: methylation data

Figure: Methylation data
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Code

. Github Repository

johnnymdoubleu/
lassoSSNAL

h Newton Augmented Langrangian

a2 [ORF} w1 %o 0

GitHub - johnnymdoubleu/lassoSSNAL: Semismooth Ne...
Semismooth Newton Augmented Langrangian Method imple...
Jithub.com
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Conclusion

Conclusion

@ SSNAL : fast and highly efficient two-phase Semismooth Newton augmented
Lagrangian methods for solving large scale Lasso problems.
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Conclusion

Conclusion

@ SSNAL : fast and highly efficient two-phase Semismooth Newton augmented
Lagrangian methods for solving large scale Lasso problems.

@ SSNAL : reproduced and presented the algorithm in R package with C++.
(Currently, aim to publish on CRAN)

@ Experiment: UCI, Statlib and Methylation dataset and obtained a promising
result with additional comparison against glmnet

@ Future Work: on developing a more generalised SSNAL method to apply on

Elastic Net, fused Lasso and many more.
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Conclusion

Thank you for your attention!
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