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Introduction

What is Lasso Regression

Stands for least absolute shrinkage and selection operator. Introduced by
Robert Tibshirani in 1996.

In a regular least-squares regression with many more variables than number
of subjects, there is a need to select features with the strongest effect.

This improves model explainability and reduces overfit.

Lasso introduces a penalty term on the ℓ1-norm of the parameter vector in
addition to the least-squares term:

argmin
x

{
1

2
∥Ax − b∥2 + λ∥x∥1

}
This Lagrangian form is equivalent to a constrained minimisation problem
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Introduction

Lasso Regression (continued)

Similar to ridge regression, which introduces a constraint on the ℓ2 norm of
the parameter vector, but better, since Lasso tends to push parameters to
zero, whereas ridge only decreases their absolute value.

The optimal case would be best-subset selection, when all possible
combinations of regressors are tried to produce the one with the lowest sum
of squares for a given number of non-zero parameters.

This is computationally costly, since it is O(m!), but Lasso gives a very good
approximation to it.

Both ridge and Lasso are convex problems, and can be solved with the
correct numerical, computational methods
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Introduction

Original Paper

A highly efficient semismooth Newton augmented Lagrangian method for
solving Lasso problems, Li, Xudong, Sun, Defeng and Toh, Kim-Chuan,
SIAM Journal on Optimization, Vol. 28(1), pp 433-458, 2018, SIAM
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Semismooth Newton Augmented Lagrangian Method

Convex Composite

Primal Problem

(P) min

{
1

2
∥Ax − b∥2 + λ∥x∥1

}
where A : X → Y, h : Y → R, p : X → (−∞,+∞] and c ∈ X is a vector.
h(ξ) = 1

2∥ξ − b∥2 and p(x) = λ∥x∥1

Dual Problem

(D) max

{
− 1

2
∥ξ∥2 + ⟨b, ξ⟩ | AT ξ + u − c = 0, ∥u∥∞ ≤ λ

}
where h∗(ξ) = − 1

2∥ξ∥
2 + ⟨b, ξ⟩ and p∗(x) = I∥x∥∞

p∗ and h∗: the Fenchel conjugate functions of p and h
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Semismooth Newton Augmented Lagrangian Method

Assumptions on the loss function

Assumption 1.

1. h∗(·) is essentially smooth where h∗ is differentiable on int(dom h∗) ̸= ∅ and

limk→∞∥h∗(ξk)∥ = +∞ whenever {ξk} is a sequence in int(dom h∗)
converging to a boundary point ξ of int(dom h∗).

2. p∗(·) is either an indicator function δp(·) or a support function δ∗p for some

nonempty polyhedral convex set P ⊆ X .

Assumption 2.

h : Y → R is a convex differentiable function whose gradient is
1
αh

Lipschitz continuous i.e.

∥∇h(ξ′)−∇h(ξ)∥ ≤ 1

αh
∥ξ′ − ξ∥, ∀ξ′, ξ ∈ Y

(h∗(·) is strongly convex with modulus αk)
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Semismooth Newton Augmented Lagrangian Method

Assumptions on the loss function

Assumption 3.

h is essentially locally strongly convex, i.e. for any compact and convex set
K ⊂ dom ∂h , there exists βK > 0 s.t.

(1− λ)h(ξ′) + λh(ξ) ≤ h((1− λ)ξ′ + λξ) +
1

2
βKλ(1− λ)∥ξ′ − ξ∥2,

∀ξ′, ξ ∈ K

(∇h∗(·) is locally Lipschitz continuous and directionally differentiable on
int(dom h∗))

Assumption 4.

The Karush Kuhn Tucker (KKT) system is nonempty and its solution is denoted

as ξ̄, ū and x̄ .
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Semismooth Newton Augmented Lagrangian Method

An augmented Lagrangian method for (D)

The Lagrangian function of (D) is,

ℓ(ξ, u; x) = h∗(ξ) + p∗(u)− ⟨x ,A∗ξ + u − c⟩, ∀(ξ, u; x) ∈ Y × X × X

Given σ > 0, the augmented Lagrangian function of (D) is,

Lσ(ξ̄, ū; x̄) := ℓ(ξ, u; x) +
σ

2
∥A∗ξ + u − c∥2, ∀(ξ, u; x) ∈ Y × X × X

Proxσλ∥·∥1
(x) = argminu{ 1

2∥u − x∥2 + σλ∥u∥1} and
Proxσp(x) = sgn(x) ◦max{|x | − σλ, 0}.
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Semismooth Newton Augmented Lagrangian Method

Algorithm 1

Algorithm Inexact Augmented Lagrangian Method

Let σ0 > 0 be a given penalty parameter.
Choose (ξ0, u0, x0) ∈ int(dom h∗)× dom p∗ ×X .

for i = 0, 1, . . . ,∞ do
(1) Compute

(ξk+1, uk+1) ≈ argmin{Ψk(ξ, u) := Lσk
(ξ, u; xk)} (1)

(2) Compute

xk+1 = xk − σk(A
∗ξk+1 + uk+1 − c) & update σk+1 ↑ σ∞ ≤ ∞
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Semismooth Newton Augmented Lagrangian Method

Global and Local Convergence

From [Rockafellar, 1976a1 and 1976b2],

Convergence Criterion for inner subproblem (1)

(A) Ψk(ξ
k+1, uk+1)− inf Ψk ≤ ε2k

2σk
,

∞∑
k=0

εk <∞

(B1) Ψk(ξ
k+1, uk+1)− inf Ψk ≤

( δ2k
2σk

)
∥xk+1 − xk∥2, δk ≥ 0,

∞∑
k=0

δk <∞

(B2) dist(0, ∂Ψk(ξ
k+1, uk+1)) ≤

( δ′k
σk

)
∥xk+1 − xk∥, 0 ≤ δ′k → 0

where, dist(x , C) := infx′∈C∥x − x ′∥ for any x ∈ X and any C ⊂ X

1Rockafellar, R.T., 1976. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5), pp.877-898.

2Rockafellar, R.T., 1976. Augmented Lagrangians and applications of the proximal point
algorithm in convex programming. Mathematics of operations research, 1(2), pp.97-116.
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method for inner problems

Definition (Semismoothness) [Miffin, 1977]3

Suppose that M : X ⇒ L(X ,Y) & F : X → Y, is a locally Lipschitz continuous
function. F is said to be semismooth at x ∈ X if F is directionally differentiable
at x and for any G ∈ ∂F (x +∆x) = M(x +∆x) & ∆x → 0.

F (x +∆x)− F (x)− G (∆x) = o(∥∆x∥)

F is said to be strongly semismooth at x ∈ X if,

F (x +∆x)− F (x)− G (∆x) = O(∥∆x∥2)

Then F is said to be semismooth (strongly semismooth) function on X if it is
semismooth (strongly semismooth) everywhere in X

3Mifflin, Robert. “Semismooth and semiconvex functions in constrained optimization”. In:
SIAM Journal on Control and Optimization 15.6 (1977),pp. 959–972
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method for inner problems

While fixing σ > 0, we newly denote for ξ ∈ int(dom h∗),

ψ(ξ) := inf
u
Ψ(ξ, u) = inf Lσ(ξ, u; x)

= h∗(ξ) + p∗(Proxp∗/σ)(x̄/σ − A∗ξ + c)

+
1

2σ
∥Proxσp(x̄ − σ(A∗ξ − c))∥2 − 1

2σ
∥x̄∥2

We compute the 1st and 2nd derivatives

∇ψ(ξ) = ∇h∗(ξ)− AProxσp(x̄ − σ(A∗ξ − c)), ∀ξ ∈ int(dom h∗)

∂̂2ψ(ξ) = ∇2h∗(ξ) + σAProxσp(x̄ − σ(A∗ξ − c))A∗

where ∂2h∗(ξ) is the Clarke subdifferential of ∇h∗(·) at ξ and
∂ Proxσp(x̄ − σ(A∗ξ − c)) is the Clarke subdifferential of the Lipschitz
continuous mapping and Jacobian of Proxσp(·) at x̄ − σ(A∗ξ − c).
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method for inner problems

Then solve the semismooth equation,

∇ψ(ξ) = 0, ξ ∈ int(dom h∗)

Then we define the generalised Hessian of ψ at ξ,

V := H + σAPA∗

with H ∈ ∂2h∗(ξ) and P ∈ ∂ Proxσp(x̄ − σ(A∗ξ − c)) where for the case of
our paper, h(ξ) = 1

2∥ξ∥
2 + bT ξ, ∇h∗(ξ) = ξ + b, ∇2h∗(ξ) = Im. h∗(·) is

twice differentiable and Proxλ∥·∥ is a piecewise linear function which are
strongly semismooth.
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Semismooth Newton Augmented Lagrangian Method

Algorithm 2

Algorithm Semismooth Newton Method

Given the hyperparameter, µ ∈ (0, 12 ), η̃ ∈ (0, 1), τ ∈ (0, 1] & δ ∈ (0, 1).
Choose ξ0 ∈ int(dom h∗) and for j = 0, 1, . . . ,∞ do
(1) Choose Hj ∈ ∂2(∇h∗)(ξj) & Pj ∈ ∂ Proxσp(x̃ − σ(A∗ξj − c)). Let Vj :=
Hj + σAPjA

∗. Solve the following Linear System exactly or by the conjugate
gradient algorithm to find d j

Vjd +∇ψ(ξj) = 0,where d = ∆ξ

s.t. ∥Vjd
j +∇ψ(ξj)∥ ≤ min(η̃, ∥∇ψ(ξj)∥)1+τ

(2) Set α = δmj where mj is the first nonnegative integer m for which,

ξj + δmd j ∈ int(dom h∗) and ψ(ξj + δmd j) ≤ ψ(ξj) + µδm⟨∇ψ(ξj), d j⟩

(3) Set ξj+1 = ξj + αjd
j
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Semismooth Newton Augmented Lagrangian Method

Convergence of semismooth Newton method

Let the sequence {ξj} be generated by Algorithm 2,

Theorem

Assume that ∇h∗(·) and Proxσp(·) are strongly semismooth on
∫
(dom h∗) and X

then ξj converges to the unique optimal solution ξ̄ ∈ int(dom h∗) and
ū = x̄ − σ(AT ξ̄ − c) at least superlinearly, i.e.,

∥ξj+1 − ξ̄∥ = O(∥ξj − ξ̄∥1+τ ), for any j ≥ 0,Vj ∈ ∂2ψ(ξj)

Then, the implementable stopping criterion from the stopping criteria (A), (B1)
and (B2)

(A′) ∥ψk(ξ
k+1)∥ ≤ εk√

σk/αh

(B1′) ∥∇ψk(ξ
k+1)∥ ≤

√
αhσkδk∥A∗ξk+1 + uk+1 − c∥

(B2′) ∥∇ψk(ξ
k+1)∥ ≤ δ′∥A∗ξk+1 + uk+1 − c∥, 0 ≤ δ′k → 0

where
∑∞

k=0 εk <∞ and
∑∞

k=0 δk <∞ and ∥∇ψk(ξ
k+1)∥ is sufficiently small.
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method

We can exploit the second order sparsity,
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method

We solve the linear system,

(Im + σAPAT )d = −∇ψ(ξ)

We let J := {j | |xj | > σλ, j = 1, ..., n} and |J | = r , the cardinality of J .
Then we have

APAT = (AP)(AP)T = AJAT
J

For the case when p << m, instead of factorising an m ×m matrix, we can
invert a much smaller, p × p, matrix by using the Sherman-Morrison-Wood
formula,

(Im + σAPAT )−1 = (Im + σAJAT
J )−1 = Im −AJ (σ−1Ir +AT

JAJ )−1AT
J
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Semismooth Newton Augmented Lagrangian Method

Semismooth Newton method

The relative KKT residual:

η =
∥x̄ − Proxλ∥·∥(x̄ − A∗(Ax̄ − b))∥

1 + ∥x̄∥+ ∥Ax̄ − b∥
< ε

Number of nonzeros: nnz := min

{
k |

∑k
t=1 |x̂t | ≥ 0.999∥x∥1

}
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Semismooth Newton Augmented Lagrangian Method

Datasets

Data Dimension(m; n) λmax(AA
∗)

pyrim5 74; 201376 1.22e+06
triazines4 186; 635376 2.07e+07
abalone7 4177; 6435 5.21e+05
bodyfat7 252; 116280 5.29e+04
housing7 506; 77520 3.28e+05
mpg7 392; 3432 1.28e+04
space ga9 3107; 5005 4.01e+03

Table: UCI and Statlib Testing Instances

Methylation data - 450k CpG methylation sites for 656 patients, and their
ages
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Semismooth Newton Augmented Lagrangian Method

Implementation details - overview

How was the algorithm implemented and tested in code?

1 First, we installed MATLAB, cloned the SuiteLasso package.

2 Ensured it reproduced the results of the [Li et al, 2018] paper on UCI and
Statlib data sets

3 Then, we made drafts in R of the original MATLAB code with reference to
the pseudocode in [Li et al, 2018]

4 Changed norms, matrix-vector algebra functions, preconditioning functions,
workflow and parameterisation as necessary.
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Semismooth Newton Augmented Lagrangian Method

Implementation details - debugging

To transform the drafts into working code, the packages were debugged
side-by-side as follows:

Breakpoints were introduced in both packages after every major event.

The numerical equality of key values was ensured

Primal objective
Dual objective
Relative difference
Parameter vectors x and xi
σ for matrix scaling, etc...

Where we wanted to test the equality of a vector, equality of a suitable norm
was taken as a substitute.

This revealed easily-fixed bugs in the R code when they occurred.

To begin, this was only performed on abalone7 data at one particular value
of λ
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Where we wanted to test the equality of a vector, equality of a suitable norm
was taken as a substitute.

This revealed easily-fixed bugs in the R code when they occurred.

To begin, this was only performed on abalone7 data at one particular value
of λ
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Semismooth Newton Augmented Lagrangian Method

Implementation details

1 For the solution of the subproblem, the logical switch on how to invert the
sparse Hessian was taken from [Li et al, 2018] and implemented in R, with
the same debugging process as above.

2 For the first several iterations on abalone7 data, the R code was able to
generate the same results on key variables as the MATLAB code.

3 Towards the end of the algorithm, very slight differences (on the order of
10−5, and relatively small also) were observed

4 We attributed to different handling of floating point extrema.

5 However, this did lead in general to the R code taking a few more iterations
than MATLAB.
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Semismooth Newton Augmented Lagrangian Method

Implementation details

Nevertheless, after de-scaling and transforming the output vectors, we
obtained the exact same results as the MATLAB code in terms of objective
values, minimum and maximum parameter estimates and number of
non-zeros calculated according to:

nnz := min

{
k |

∑k
t=1 |x̂t | ≥ 0.999∥x∥1

}
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Semismooth Newton Augmented Lagrangian Method

Overall results

Data λc Time (s) Objective Value

Matlab — R-SSNAL — glmnet Matlab — R-SSNAL — glmnet

pyrim5 10−3 2.16 — 9.92 — 0.40 0.07511 — 0.07511 — 0.0795
(74;201376) 10−4 2.63 — 27.82 — 0.26 0.0109 — 0.0108 — 0.0260
triazines4 10−3 13.79 — 170.92 — 3.3 0.5452 — 0.5452 — 0.5548

(186;635376) 10−4 27.90 — 1580.88 — 5.48 0.1156 — 0.1156 — 0.1524
abalone7 10−3 1.95 — 6.84 — 1.04 11407 — 11407 — 12158

(4177;6435) 10−4 3.47 — 18.14 — 2.48 9289 — 9289 — 9716
bodyfat7 10−3 1.64 — 5.00 — 0.30 0.2925 — 0.2925 — 1.334

(252;116280) 10−4 2.27 — 7.52 — 0.98 0.03031 — 0.03031 — 0.2372
housing7 10−3 2.92 — 13.88 — 0.60 2775 — 2775 — 2819

(506;77520) 10−4 2.27 — 7.52 — 0.98 920.3 — 920.3 — 987.1
mpg7 10−3 0.32 — 1.02 — 0.04 1669 — 1669 — 2076

(392;3432) 10−4 0.37 — 2.90 — 0.16 890 — 890 — 985.57
space ga9 10−3 0.81 — 2.34 — 0.10 31.9 — 31.9 — 62.08
(3107;5005) 10−4 2.27 — 7.52 — 0.98 19.88 — 19.88 — 31.63

Table: Performance comparisons of SSNAL in Matlab and R and glmnet
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Semismooth Newton Augmented Lagrangian Method

Overall results

Data λc min max NNZ

Matlab — R-SSNAL — glmnet Matlab — R-SSNAL — glmnet Matlab — R-SSNAL — glmnet

pyrim5 10−3 -0.0422 — -0.0422 — -0.1732 0.165 — 0.166 — 0.1067 70 — 70 — 166
(74;201376) 10−4 -0.0897 — -0.0896 — -0.63454 0.172 — 0.172 — 0.064 77 — 78 — 1643
triazines4 10−3 -0.163 — -0.163 — -0.163 0.161 — 0.161 — 0.182 565 — 572 — 292

(186;635376) 10−4 -0.458 — -0.458 — -0.4525 0.300 — 0.296 — 0.2465 261 — 261 — 1573
abalone7 10−3 -8.13 — -8.13 — -13.49 11.7 — 11.7 — 11.7 24 — 24 — 21

(4177;6435) 10−4 -13.3 — -13.3 — -12.97 16.1 — 16.1 — 7.96 59 — 59 — 129
bodyfat7 10−3 -0.0465 — -0.0465 — -0.8133 1.05 — 1.05 — 1.202 2 — 2 — 17

(252;116280) 10−4 -0.0526 — -0.0526 — -1.06 1.05 — 1.045 — 1.314 3 — 3 — 49
housing7 10−3 -7.37 — -7.37 — -8.02 3.25 — 3.25 — 4.114 158 — 158 — 163

(506;77520) 10−4 -13.1 — -13.1 — -19.7 11.3 — 11.27 — 8.39 281 — 281 — 484
mpg7 10−3 -5.08 — -5.08 — -23.68 17 — 16.98 — 14.99 47 — 47 — 46

(392;3432) 10−4 -11.8 — -11.8 — -18.93 15.3 — 15.3 — 16.38 128 — 128 — 172
space ga9 10−3 -1.14 — -1.14 — -3.68 0.978 — 0.978 — 3.77 14 — 14 — 19
(3107;5005) 10−4 -3.56 — -3.56 — -4.59 2.64 — 2.64 — 4.71 38 — 38 — 58

Table: Performance comparisons of SSNAL in Matlab and R and glmnet
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Semismooth Newton Augmented Lagrangian Method

Implementation details

1 The algorithm was profiled.

2 Slow steps required either a reworking of the matrix algebra (matrix-free
methods).

3 For very large problems, we implemented fast algorithms suggested on
StackOverflow in RCpp, which can execute fast C++ code as an R function.

4 We then exported the (polynomial basis expanded) data from MATLAB to R
and compared it to the glmnet package using a manual 10-fold
cross-validation for the seven UCI data sets.

5 The objective function for glmnet was suitably transformed.

6 Methylation data could not undergo a cross-validation because the algorithm
did not converge in sensible time, but we did show better objective values
around the optimal lambda obtained by cv.glmnet

7 Altogether, around 1,800 lines of code.
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Experiments

Cross-validation

Split the data into equal portions, i.e. 10 parts

Use 9
10 as a train set

Make predictions for the remaining 1
10 and compute mean-squared error for

that fold∑
(ŷ − yi )

2
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Experiments

Cross-validation: UCI and Statlib

Figure: abalone
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Experiments

Cross-validation: UCI and Statlib

Figure: bodyfat
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Experiments

Cross-validation: UCI and Statlib

Figure: housing
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Experiments

Cross-validation: UCI and Statlib

Figure: mpg
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Experiments

Cross-validation: UCI and Statlib

Figure: pyrim
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Experiments

Cross-validation: UCI and Statlib

Figure: space ga
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Experiments

Cross-validation: UCI and Statlib

Figure: triazines
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Experiments

Objective values: methylation data

Figure: Methylation data
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Code

Code

Github Repository
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https://github.com/johnnymdoubleu/lassoSSNAL


Conclusion

Conclusion

1 SSNAL : fast and highly efficient two-phase Semismooth Newton augmented
Lagrangian methods for solving large scale Lasso problems.

2 SSNAL : reproduced and presented the algorithm in R package with C++.
(Currently, aim to publish on CRAN)

3 Experiment: UCI, Statlib and Methylation dataset and obtained a promising
result with additional comparison against glmnet

4 Future Work: on developing a more generalised SSNAL method to apply on
Elastic Net, fused Lasso and many more.
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Conclusion

Thank you for your attention!
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